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Diffraction of Kelvin waves from a rotating channel 
with an infinite and a semi-infinite barrier 

George M Kapoulitsasf 
University of Surrey, Guildford, Surrey, UK 

Received 26 January 1978 

Abstract. The diffraction of long waves in a rotating channel of constant depth, consistingof 
an infinite and a semi-infinite parallel barrier of zero thickness, is investigated. The 
excitation is due to a Kelvin wave travelling towards the open end from inside the channel. 

An exact solution is given for the region inside the semi-infinite channel, consisting of a 
'reflected' Kelvin wave and the various travelling modes, which become attenuated waves 
when the width of the channel is less than a certain value. Moreover it is shown that there is 
a resonance effect for some critical values of the channel width. In the remaining region an 
asymptotic expression for the far field is obtained. This expression involves a Kelvin wave 
travelling along the infinite barrier and also an outgoing cylindrical wave (Poincart wave) 
coming from the edge of the semi-infinite barrier of the channel. 

1. Introduction 

In this paper the diffraction of long waves in a rotating channel of constant depth, 
consisting of an infinite and a semi-infinite parallel plane of zero thickness, is investi- 
gated. The excitation is due to a Kelvin wave travelling towards the open end from 
inside the channel. 

An exact solution is given for the region inside the semi-infinite channel; in the 
remaining region an asymptotic expression for the far field is obtained. These theoreti- 
cal results may explain qualitatively the formulation of tides in the case of an elongated 
island along a straight coastline. 

The method followed is based on the Wiener-Hopf technique, and the appropriate 
functional equation is derived by applying the complex Fourier transform directly to the 
differential equation of the problem. 

In  the particular case of zero angular velocity the solution concerns the surface 
elevation without rotation and also represents the propagation of electromagnetic or 
sound waves produced by a plane harmonic wave incident along the above channel, 
studied by Heins (1956). 

2. Formulation of the problem 

The linearised equations of motion for long waves in a sheet of water of uniform depth, 
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assuming a time factor e-'"', are, in Cartesian coordinates (Proudman 1953), 
hk2u = -iw a4Jax + f a d t l a y  
hk2u = -f a4t/ax - iw a 4 d a y  

( 2 . l a )  

( 2 . l b )  

( V 2 + k 2 ) 6 , = O .  (2 . lc)  

Here q5t is the total elevation of the free surface above its mean level; U, U are the 
components of the velocity in the horizontal x, y plane, which are functions of x, y ,  t 
only; f is the Coriolis parameter equal to 212 sin p, where 12 is the angular velocity of the 
Earth and p the northern latitude; and V2 is the two-dimensional Laplacian. Also 
c k = w - f 2 ,  c 2  = gh and w >f, where g is the gravitational acceleration. 

Now suppose that a Kelvin wave di = exp[c-'(iwx-fy)] moves to the right towards 
the open end of a channel formed by an infinite plane (y  = 0, -CO < x <a) and a 
semi-infinite plane ( y  = b, x < 0) (figure 1). The fluid occupies the field y 0, and we 
investigate the waves radiated from this model. 

2 2  2 

t '  

10.61 
! Region B 

Region A 

*+, 
I 

Figure 1. The geometry of the channel. 

The whole field is divided into two regions-region A (0 
region B (y  3 b, - M < x < a)-and the function 4 is defined by 

y 6 b, - a < x < a) and 

q5 + 4; in region A 
in region B. 

For convenience we put f = kc sinh 0, w = kc cosh 0 ; the incident wave is then 

The problem is to find a solution of equation ( 2 . 1 ~ )  satisfying the following 
written as 4i = exp[k(ix cosh p-y sinh p) ] .  

conditions: 

for y = 0 ( - a < x < m )  
(2 .3 )  

a41 i tanh p-= 0 a4t -- 
a y  ax (for y = b * O  (x < 0 )  

a 4 t / a y  - i(tanh p )  a4,lax is continuous across y = b 

and 4, is continuous across y = b 

( - M < X < M )  

(x 3 0). 

( 2 . 4 )  

( 2 . 5 )  
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Lastly we assume 

Q l t =  O(1) as x + O * O  on y = b ( 2 . 6 ~ )  

and 
&$Jay = O(X-"~)  as x + 0 + 0 on y = b. (2.6b) 

According to definition (2.2) the above conditions also hold for 4. 
In the following we shall assume that w is complex with a small positive imaginary 

part w 2  (i.e. w = w 1  + iw2; w 1  >> w 2  > O ) .  This implies that k is also complex with a small 
positive imaginary part k2 (i.e. k = k ,  + ik2; k l > >  k2 > 0). The solution is obtained from 
the final results by making w 2  + 0 + 0, which implies k2 +. 0 + 0 and vice versa. 

From (2.2) and the result found by the author (Kapoulitsas 1975) that all the modes 
travelling into a semi-infinite channel from the origin to the left are of order e'"' as 
x + -03, where T~ < k 2 ( l  - f 2 / w  1 )  < k 2 ,  it can easily be seen that, for any fixed y, 
4 = O(e-To'.lxl) at most, as 1x1 + a; hence the two-sided complex Fourier transform 
@(a, y )  of 4(x, y )  in x, defined by 

@(a, Y 1 = I-, 4 (x, Y )  dux dx, a =u+i i7  (O;T real), (2.7) 

exists in the whole field and is regular in the strip / T I  < T~ of the a plane. Moreover it is 
found that 4 is bounded as y + cc for any LY in the above strip of regularity. 

2 1 i 2  

cc 

We also define the one-sided complex Fourier transforms 
1) 

@+(a, y 1 = / 4 (x, y 1 elax dx 

and 

( 2 . 8 ~ )  

(2 .86)  

which are regular in T > -r0 and T < T~ respectively. Evidently 

@(a, y) = @*(a, y )+@-(a ,  y ) .  (2.9) 

3. The basic Wiener-Hopf equation 

Applying the two-sided Fourier transform to equation (2 .  IC), and supposing that ad/dx 
has a similar behaviour to 4 for lx/ + 03, we get 

The function y has branch points at a = i k ;  the cuts from these points are taken 
symmetrical to each other with respect to the origin, outside the strip < k 2 ,  and along 
the straight line passing through these branch points. To have a physically acceptable 
solution of the problem-that is, the solution which satisfies all the requirements of the 
previous sections as well as Sommerfeld's 'radiation condition' at infinity-a suitable 
branch of the primarily multivalued function ( a 2 -  k2)1'2 is specified by the author 
(Kapoulitsas 1975). 



736 George M Kapoulitsas 

We mention here that by this specification the real part of y is positive inside the 

The general solution of (3.1), regular in I T )  < TO, is of the form 
strip I T /  < k2. 

A ( a )  e-"' + B ( a )  e"' 
C ( a )  e-"' 

( O S  y S b, region A) 
( y  5 6, region B) @ ( % Y )  = (3.3) 

where A,  B and C are functions of a but not of y .  
On applying the two-sided Fourier transform to the boundary condition (2.3) we get 

@'(a, 0) - a (tanh @)@(a, 0) = 0 (3.4) 

where the prime is taken to mean the derivative with respect to y .  
Using now (3.3) we obtain 

B = A(y  + a  tanh p ) / ( y  - a tanh p ) .  (3.5) 

Also from condition (2.4) we have 

@'(a, b-O)-a(tanhp)@(a, b-O)=@'(a, b+O)-a( tanhp)@(a ,  b+O), 

and using (3.3) and (3.5) we obtain 

(3.6) 

C = -2A eYb(sinh y b ) .  (3.7) 

Next from (2.3) applied to y = b * O  we have, after taking the one-sided Fourier 

(3.8) 

transform from --a3 to 0, 

@:(a, b * 0) - a(tanh p)@.-(a, b * 0) - i(tanh p)d(O,b)  = 0, 

since 4(0, b -0) = 4(0, b +0)  = 4(0, b). 

@+(a, b -0)-a( tanhp)@+(a,  b -0)+i(tanh p)4(0,  b) 

From equations (3.8) and (3.6) we obtain 

= @+(a, b - 0) - a(tanh @)@+(a, b + 0) +i(tanh p)d(O,  b) 

= q+(a ,  b ) ,  say. (3.9) 
Finally from condition ( 2 . 5 )  we obtain 

@+(a, b-O)+iexp(-kb sinhp)/(k c o s h p + a ) = @ + ( a ,  b+O). (3.10) 

Now using equations (3.3), (3.8) and (3.9) we get 

q + ( a ,  6)  = 2A(y + a  tanh /3)(sinh yb). (3.11) 

Next we define 

F-(a, b)=$(@-(a, b -O)-@-(a, b+O) (3.12) 

and from equations (3.31, (3.10), (3.12), (3.5) and (3.7) we get 

2F-(a, 6)-iexp(-i kb s inhp)/(k c o s h p + a ) = [ 2 A y / ( y - a  tanhp)]eYb.  

Eliminating A from (3.13) and (3.11) we get 

(3.13) 

cosh2 p by eYb i exp(-kb sinh p )  
2F-(a, b ) -  a - k 2  cosh2 p b sinh yb a + k cosh p = 0 ,  (3.14) 

which is a functional equation of the Wiener-Hopf type. 
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4. Solution of the Wiener-Hopf equation 

We can write 

(sinh y P ) / y b  evb = L(a)  = L+(a)  L-(a)  (4.1) 

where L+(a)  andL-(a)  are regular and non-zero in T > -kZ and T < k2 respectively, and 
both tend asymptotically to lal-l’z as a +CO in their appropriate half-planes of 
regularity. The factors L+(a)  and L- (a )  are known (Noble 1958) and their properties 
are not repeated here. We only mention that 

L+(-a) = L-(a) .  (4.2) 

Equation (3.14) may now be rewritten as 

a - k cosh p 
a + k cosh p - i  exp(-kb sinh p )  L-(a)  = 0. (4.3) 

Moreover we may write 

a - k c o s h p  ((Y - k cosh P)L-(a) +2k(cosh p)L-(-k cosh p )  L- (a )  = 
a + k cosh /3 a + k cosh @ 

where the first part is regular in T < T ~  and the 
Equation (4.3) then becomes 

second part is regular in T > - T ~ .  

i exp(-kb sinh p )  
a + k cosh p 2F-(a,  b )  ( a  - k cosh P)L-(a) - 

cosh2 p 
b ( a  + k cosh P)L+(a)  

2i expi-kb sinh p )  
a + k cosh p L-(-k cosh p )  k cosh p. *(a, b) - - - 

(4.4) 
In  equation (4.4) the left-hand side is regular in T < T~ while the right-hand side is 
regular in T > - T ~ ,  and hence both sides are regular in the strip 171 < TO. 

Then by analytic continuation they define a function which is regular over the entire 
a plane. Using next the edge conditions (2.6), and considering the asymptotic 
behaviour of *+(a, b) and F-(a, b) as a + CO in their appropriate half-planes of 
regularity, we find, on applying the appropriate Abel theorem, that each member of 
(4.4) must be zero, and hence 

(4.5) *(a, b )  = [2ikbL+(k cosh p )  exp(-kb sinh P)/cosh @]L,(a) 

From relations (3.111, (3.5) and (3 .7)  we now obtain 

( 4 . 6 ~ )  
2kbL+(k cosh p )  exp(-kb sinh p )  L+(a 1 

( y  - a  tanh P)(sinh yb) 
A =  

cosh p 
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(4.6b) 2kbL+(k cosh p )  exp(-kb sinh p )  L+(a) 
( y  -a  tanh p)(sinh y b )  

B =  
cosh p 

( 4 . 6 ~ )  -2ikbL+(k cosh p )  exp(-kb sinh p )  L+(a)  eYb 
C =  cosh p y + a  t a n h p '  

5. The solution 4 (x, y )  

5.1. Region A (0 d y d b, -a < x < m) 

From (3.3) and (4.6) we have 

+ e-" 
y +a tanh p y - a  tanh p .  @ ( a , y ) = E  (5.1) 

where 

E = ikL,(k cosh 6) exp(-kb sinh @)/cosh p. (5.2) 

The solution 4(x ,  y )  for this region is expressed by the Fourier inverse 
cotia 

4 ( x , y ) = -  I @(a, y )  e-'""da (la1 < 70). (5.3) 2 7  -x+,(l 

The contour of integration is shown in figure 2. 

x po les  of l a ,x  I t 7  

- k  I 

Figure 2. The strip of regularity of @(a, y )  and the contour of integration for the integral in 
equation (5 .3 ) .  

For x < 0 we close the contour in the upper half-plane where the only singularities of 
@(a, y )  are poles located at a& = k cosh p and a,  = i ( n 2 r 2 / b 2  - k2)1'2, n = 1 , 2 ,  . . . . It 
can be shown that if the contour is closed by a sequence of concentric circular arcs CN, 
N = 1, 2 , .  . . , such that each arc CN,  whose equation is la1 = / R N ~ ,  passes through no 
pole of @(a, y ) ,  and the radius RN tends to infinity as N + 00, then @(a, y )  +. 0 on CN as 
N + CO. Hence IC @(a, y )  e-'ax d a  = 0 on C, where C is the above limit of CN, N + CO, 

and thus an application of the residue theorem gives 

. .  

4(x,  y )  = ixRes(@(a, y )  e-'""). (5.4) 
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By calculating the residues at the above poles we get 

-kb(sinh p)L+(k cosh p )  exp(-kb sinh p )  
sinh(kb sinh p )  exp[k(-ix cosh p + y sinh p ) ]  4 k  Y )  = 

iEr n(-l)" 
++- L+(ff,) 

n = l  a,  

( 5 . 5 )  e-'%x* e -(inn' b)' 
e b ? m l b ) q  

+ 
' ( (m/b )+ ia ,  t anhp  ( m / b ) - i a ,  t anhp  

The first term in equation ( 5 . 5 ) ,  coming from the pole f f k  = k cosh p, is the 'reflected' 
Kelvin wave moving to the left inside the semi-infinite channel. The amplitude of this 
wave, as a function of k, p and 6, depends on the depth (h)  and the breadth (6) of the 
channel as well as on the frequency ( w )  of the incident wave and the latitude ( p )  of the 
water sheet considered. 

The remaining part of the solution in ( 5 . 5 )  is a convergent series containing all the 
possible modes propagating along the channel in the negative x direction. 

For bk<?i  all an's are pure imaginary and positive, and hence all the modes 
represent attenuated waves, the amplitude of which decays exponentially to zero as 
X +--Co. 

Let it be noted finally that in the event that k = m / b  we have a,  = 0, and hence the 
amplitude of the mode of the nth term of the series in ( 5 . 5 )  becomes infinite 
(resonance). Thus we must suppose that k is sufficiently far from m / b ,  n = 1 , 2 , .  . . . 
For f = 0 the solution corresponds to the usual modes without rotation and also 
represents the propagation of two-dimensional sound waves or electromagnetic waves 
of TE type. 

For x > 0 the solution may be determined from the solution for region B given in 
0 5.2, which could be continuously extended to this part of region A. 

5.2. Region B (y  2 b, - 00 < x < CO) 

Again from (3.3) and (4.6) we get 

@(CY, y )  = -2E [ L + ( a ) / ( y  +a tanh p ) ]  e-v(y-b) 
and 

(5.6) 

The contour r of integration is shown in figure 3. We take kz-+O+O for the 
remainder of this paper to avoid unnecessary complications. 

The integrand in (5.7) has a pole at a = - k  cosh p. It has also branch points at 
a = *k, and so the above integral cannot be evaluated in a closed form. 

However, we can determine the leading term of the asymptotic expansion of the 
integral in (5.7) for the far field by applying the method of steepest descents (Copson 
1970). 

The transformations 

x = r cos 8, y - b = r sin 8 ( r > O ,  0 < 8 < r )  (5.8a) 
and 

a = -k COS Z, y = -ik sin z,  z = p + i q  (P, real) (5.86) 
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a plane 

r c u t p  

D 
.U , _ - _ _ - - -  -- 

U 
A Ikl 0 '  

are applied to the integral in (5.7), and the result is 

elkr cor(z-e) dz. E I L,(-k cos z )  sin z 
4 ( x , y ) = -  

T r' i sin z +(cos z )  tanh p (5.9) 

The new contour I" of integration in the z plane is shown in figure 4. 
By the transformation (5.9) the whole a plane is mapped into the strip (0 S p  S T,  

-cc < q < +CO) of the z plane. In figure 4 the points 0', A', B', D', E' are images of the 
points 0, A, B, D, E respectively of figure 3. 

The relation d W/dz = 0, where W = i cos(,? - e), determines the possible saddle 
points, which are z = 0 + nr, n = 0, f 1, f 2, . . . , and we choose the saddle point S at 
z = 0 since it lies inside the above strip. The possible paths of steepest descents are 
involved in the equation Im{ W )  = const = Im{ W},=, which gives 

(5.10) cos@ - e) cosh q = 1. 

Figure 4. Contour r' and the steepest descent path for the integral in equation (5.9) 
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Of the two branches which are involved in (5.10), that which crosses the positive p axis 
at an angle of $72 and on which Re{ W }  has a maximum at S is the path of steepest descent 
(LSM) as shown in figure 4. The asymptotes of this path are the lines z = 8 *fr. The 
oscillation of the integrand in (5.9) varies slowly on LSM, as the phase of ekrW remains 
stationary. On the other hand, the integrand, having a maximum at S ,  decreases rapidly 
on each side of S on LSM. So the main contribution to the integral is due to a small 
segment of LSM around the saddle point where the integrand can be taken to be 
constant. Let us now consider the closed contour B’A’D’LSME’B‘; the integrand in 
(5.9) has a pole P’ at z = i p (figure 41, and it can easily be seen that this pole is 
inside the above closed contour if 0 < 8 < cos-’(kc/w) < ir. 

Applying now the Cauchy theorem we get for the above closed contour 

(5.11) 

where is the residue of the pole P’ and is found to be 

(€/2r)(sinh 2p)L+(-k cosh p )  ekciZcoshp-’ ’); 

H is the Heaviside unit function; and eo = cos-’(kc/w) (0 < 8 < ir). On the other hand, 
it can be seen that the contribution of the segments D’L and ME‘ into (5.11) is zero as 
Isl+00. 

Moreover the integral on LSM may be now rewritten as 

dz. - E L+(cos 8) sin e e ikrcos(z -8) 

r i sin 8 +(cos 8) tanh p ILsM 
Yet the last integral equals -rHb’) (kr), where Hb” (kr) is a Hankel function of the first 
kind and of order zero, as can easily be recognised if we go back to the contour r’, and, 
since the asymptotic expression for large kr is 

~ t )  (kr) - (2/rkr)’” ei(kr-T’4), 

equation (5.1 1) gives 

L+(-k  COS 0) (1)’” e i ( k r - ~ / 4 )  

’(’’ Y)-Ei+(cot 8) t anhp  r k r  

- H ( 6 -  Bo)iE(sinh 2p)L+(-k cosh p )  ek’xcoshp-ysinh’). (5.12) 

The first term of the solution (5.12) is a cylindrical wave (PoincarC wave) coming 
from the edge (0, b ) ,  and the second term is a Kelvin wave travelling to the right in x > 0. 
Since, for larger r, the cylindrical wave is of order (r-I”), while the Kelvin wave is of 
order we conclude that when y is.smal1 (the region near the barriers) the 
leading term in (5.12) is the Kelvin wave, as it does not diminish with distance in the x 
direction; when, however, y also becomes large, the PoincarC wave becomes the 
dominant term expressing asymptotically the surface elevation considered. 

Let it be noted finally that forf = 0 (no rotation) the Kelvin wave disappears, and the 
rest of the solution represents the solution of the corresponding problems in acoustics 
and electromagnetism. 



742 George M Kapoulitsas 

Acknowledgment 

I would like to express thanks and gratitude to Dr B A Packham, University of Surrey, 
for his valuable help and advice in preparing this paper. 

References 

Copson E T 1970 Asymproric Expansions (Cambridge: University Press) 
Heins A E 1956 Comm. Pure Appl. Math. 9 447-66 
Kapoulitsas G M 1975 PhD Thesis University of Surrey 
Mittra R and Lee S W 1971 Analytical Techniques in the Theory of Guided Waves (London: Macmillan) 
Noble B 1958 Merhods Based on the Wiener-Hopf Technique (Oxford: Pergamon) 
Proudman J 1953 Dynamical Oceanography (London: Methuen) 


